Effects of surfactants on antibacterial drugs – A brief review

Mohd Amir Asyraf Mohd Hamzah, Claira Arul Aruldass, Wan Azlina Ahmad, Siti Aminah Setu


More than half of the reported new discovered/invented drugs are ones with poor solubility, absorption or both. These are the crucial issues that can affect the bioavailability of the drugs. Therefore, improving solubility of poor-soluble drugs is absolutely important. One of the methods to solubilize them in biological fluids is using surfactants. Surfactants are an amphiphilic organic compound containing hydrophilic and lipophilic parts that allow it to reduce the surface tension between two opposite polar phases.  Several popular methods used to determine critical micelle concentration which includes surface tension, conductivity and UV-vis spectroscopy. These surfactants plays number of roles in antibacterial compound synthesis include size reduction agent, stabilizer, solubilizer and drug-carrier. This review will also critically discuss on the roles of surfactants in antibacterial compound synthesis/production and its effect on the antibacterial activity of the drugs.  


Surfactants, antibacterial activity, critical micelle concentration (CMC)

Full Text:



Al-Thamir, S. N., Al-Sa’adi, M. A. K., Al-Obaydi, I. A. (2010). The effect of polysorbate 80 on antibiotics’ sensitivity. Karbala Journal of Pharmaceutical Sciences. 2010(1), 1-11.

Arvanitidou, E., Suriano, D. (2004) Europe Patent No. EP1485457 A1. Retrieved on February 16, 2017, from https://www.google.com/patents/ EP1485457A1?cl=en.

Bhadoriya, S. S., Madoriya, N., Shukla, K., Parihar, M. S. (2013) Biosurfactant: A new pharmaceutical additive for solubility enhancement and pharmaceutical development. Biochemistry and Pharmacology. 2(2), 113. DOI:10.4172/2167-0501.1000113.

Brown, D. G., Lister, T., May-Dracka, T. L. (2014) New natural products as new leads for antibacterial drug discovery. Bioorganic & Medicinal Chemistry Letters. 24 (2) 413-418. DOI: 10.1016/j.bmcl.2013.12.059.

Chakraborty, T., Chakraborty, I., Ghosh, S. (2011) The methods of determination of critical micellar concentrations of the amphiphilic systems in aqueous medium. Arabian Journal of Chemistry. 4(3), 265-270. DOI:10.1016/j.arabjc.2010.06.045.

Chauhan, S., Kaur, M., Kumar, K., Chauhan, M. S. (2014) Study of the effect of electrolyte and temperature on the critical micelle concentration of dodecyltrimethylammonium bromide in aqueous medium. The Journal of Chemical Thermodynamics. 78, 175-181. DOI: 10.1016/j.jct.2014.07.003.

Cui, X., Mao, S., Liu, M., Yuan, H., Du, Y. (2008) Mechanism of surfactant micelle formation. Langmuir. 24(19), 10771-10775. DOI: 10.1021/la801705y.

Dai, C., Zhao, J., Yan, L., Zhao, M. (2014) Adsorption behavior of cocamidopropyl betaine under conditions of high temperature and high salinity. Journal of Applied Polymer Science. 131, 40424. DOI: 10.1002/app.40424.

Fariya, M., Jain, A., Dhawan, V., Shah, S., Nagarsenker, M. S. (2015) Bolaamphiphiles: A pharmaceutical review. Advanced Pharmaceutical Bulletin. 4(2), 483-491. DOI: 10.5681/apb.2014.072.

Figura, N., Marcologo, R., Cavallo, G., Santucci, A., Collodel, G., Spreafico, A., Moretti, E. (2012) Polysorbate 80 and Helicobacter pylori: a microbiological and ultrastructural study. BMC microbiology. 12(1), 217. DOI: 10.1186/1471-2180-12-217.

Flanagan, J., Singh, H. (2006) Chapter 7: Recent advances in the delivery of food-derived bioactives and drugs using microemulsions. In Mozafari, M. R. (Ed.) Nanocarrier Technologies: Frontiers of Nanotherapy. (pp. 95-112). Netherlands: Springer.

Kastner, W. (1992) Anionic Surfactants: Biochemistry, Toxicology, Dermatology (2nd ed.). In Gloxhuber, C. and Klunstler, K. (Eds.) Surfactant Science Series (Volume 43). (pp. 430-448). United States of America: CRC Press.

Khadka, P., Ro, J., Kim, H., Kim, I., Kim, J. T., Kim, H., Cho, J. M., Yun, G., Lee, J. (2014) Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. Asian Journal of Pharmaceutical Sciences. 9(6), 304-316. https://doi.org/10.1016/j.ajps.2014.05.005

Khan, A. M., Shah, S. H. (2008) Determination of critical micelle concentration (Cmc) of sodium dodecyl sulfate (SDS) and the effect of low concentration of pyrene on its Cmc using ORIGIN software. Journal of the Chemical Society of Pakistan. 30(2), 186-191.

Kumar, A., Kaur, G., Kansal, S. K., Chaudhary, G. R., Mehta, S. K. (2016) (Cationic + nonionic) mixed surfactant aggregates for solubilisation of curcumin. Journal of Chemical Thermodynamics. 93, 115-122. DOI:10.1016/j.jct.2015.09.027

Kumar, G. P., Rajeshwarrao, P., (2011) Nonionic surfactant vesicular systems for effective drug delivery- an overview. Acta Pharmaceutica Sinica B. 1(4), 208-219.

Lee, Y., Lee, D., Kim, Y. B., Lee, S., Cha, S., Park, H., Kim, G., Kwon, D., Lee, M., Han, S. (2015) The mechanism underlying the antibacterial activity of shikonin against methicilin-resistant Staphyloccus aureus. Evidence-Based Complementary and Alternative Medicine. Article ID 520578, 1-9. DOI: 10.1155/2015/520578.

Masui, Y., Tomida, A., Hirate, H., Otsuki, K. (2013) U.S. Patent No. US8435955B2. Retrieved on February 15, 2017, from https://www.google.ch/patents/US8435955.

Mishra, M., Muthuprasanna, P., Prabha, K. S., Rani, P. S., Satish, I. A., Chandiran, I. S., Arunachalam, G., and Shalini, P. (2009) Basics and potential applications of surfactants - A review. International of Journal of PharmTech Research. 1(4), 1354-1365.

Mohajeri, E., Noudeh, G. D. (2011) Effect of temperature on the critical micelle concentration and micellization thermodynamic of nonionic surfactants: Polyoxyethylene sorbitan fatty acid esters. Journal of Chemistry. 9(4), 2268-2274. DOI: 10.1155/2012/961739

Nogueira, D. R., Mitjans, M., Infante, M. R., Vinardell, M. P. (2011) The role of counterions in the membrane-disruptive properties of pH-sensitive lysine-based surfactants. Acta Biomaterialia. 7(7), 2846-2856. DOI: 10.1016/j.actbio.2011.03.017

Olorunsola, E. O., Adedokun M. O. (2014) Surface activity as basis for pharmaceutical applications of hydrocolloids: A review. Journal of Applied Pharmaceutical Science, 4(10), 110-116. DOI: 10.7324/JAPS.2014.40120

Richardson, K. E., Xue, Z., Huang, Y., Seo, Y., Lapitsky, Y. (2013) Physicochemical and antibacterial properties of surfactant mixtures with quaternized chitosan microgels. Carbohydrate Polymers. 93(2), 709-711. DOI: 10.1016/j.carbpol.2012.12.054.

Rose, M. J., Aron, S. A., Janicki, B. W. (1966) Effect of various nonionic surfactants on growth of Escherichia coli. Journal of Bacteriology. 91(5), 1863-1868.

Rosen, M. J., Kunjappu, J. T., (2012) Chapter 3: Micelle formation by surfactants. Surfactants and Interfacial Phenomena. (4th ed.) United States of America: Wiley.

Savjani, K. T., Gajjar, A. K., Savjani, J. K. (2012) Drug solubility: Importance and enhancement techniques. ISRN Pharmaceutics, Article ID 195727, 1-10. DOI: 10.5402/2012/195727.

Scheeren, L. E., Nogueira, D. R., Macedo, L. B., Vinardell, M. P., Mitjans, M., Infante, M. R., Rolim, C. M. B. (2016) PEGylated and poloxamer-modified chitosan nanoparticles incorporating a lysine-based surfactant for pH-triggered doxorubicinrelease.

Colloids and Surfaces B: Biointerfaces. 138, 117-127. DOI: 10.1016/j.colsurfb.2015.11.049.

Schramm, L. L., Stasiuk, E. N., Marangoni, D. G. (2003) Surfactants and their applications. Annual Reports Section “C” (Physical Chemistry). 99, 3-48. DOI: 10.1039/B208499F.

Sekhon, B. S., (2013) Surfactants: Pharmaceutical and medicinal aspects. Journal of Pharmaceutical Technology, Research and Management. 1, 11-36. DOI: 10.15415/jptrm.2013.11004

Sobisch, T. (1992) The use of methyl orange for the characterization of micelles in aqueous nonionic surfactant solutions. Progress in Colloid & Polymer Science. 89, 44-48.

Tadros, T. F. (2005) Physical Chemistry of Surfactant Solutions, in Applied Surfactants: Principles and Applications, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG. DOI: 10.1002/3527604812.ch2.

Torchilin, V. P. (2001) Structure and design of polymeric surfactant-based drug delivery systems. Journal of Controlled Release. 73(2-3), 137-172. DOI: 10.1016/S0168-3659(01)00299-1.

Urgell, B. J. P., Seguer, B. J. (2003) World Patent No. WO2003043593A1. Retrieved on February 15, 2017, from https://www.google.com/patents/WO2003043593A1?cl=en.

Zhang, J., Lv, H., Jiang, K., Gao, Y. (2011) Enhanced bioavailability after oral and pulmonary administration of baicalein nanocrystal. International Journal of Pharmaceutics. 420(1), 180-188. DOI: 10.1016/j.ijpharm.2011.08.023.

Zhou, C., Wang, F., Chen, H., Li, M., Qiao, F., Liu, Z., Hou, Y., Wu, C., Fan, Y., Liu, L., Wang, S., Wang, Y. (2016) Selective Antimicrobial Activities and Action Mechanism of Micelles Self-Assembled by Cationic Oligomeric Surfactants. ACS Applied Materials and Interfaces. 8(6), 4242-4249. DOI: 10.1021/acsami.5b12688.

DOI: http://dx.doi.org/10.11113/mjfas.v13n2.595


  • There are currently no refbacks.

Copyright (c) 2017 Mohd Amir Asyraf Mohd Hamzah, Claira Arul Aruldass, Wan Azlina Ahmad, Siti Aminah Setu

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright © 2016 Penerbit UTM Press, Universiti Teknologi Malaysia. Disclaimer: This website has been updated to the best of our knowledge to be accurate. However, Universiti Teknologi Malaysia shall not be liable for any loss or damage caused by the usage of any information obtained from this website. AmazingCounters.com