Mini-review: Recent updates on the mathematical modelling of radiation-induced bystander effects

Muhamad Hanis Nasir, Fuaada Mohd Siam

Abstract


Radiotherapy treatment uses ionizing radiation (IR) in order to kill cancer cells. However, the IR exerted its effects outside the radiation field and causes cell death in healthy cells. This effect namely as radiation-induced bystander effects (RIBE) phenomenon. The scope of the overview of the RIBE phenomenon discussed in this paper includes the RIBE mechanism, danger signaling process, deoxyribonucleic acid (DNA) double-strand breaks (DSBs) damage and the damage repair. This paper extended with the discussion of several mathematical models used to describe the RIBE phenomenon. The discussions towards the mathematical models include the models of signals concentration, the models of bystander effects and the survival fraction model. Mathematical modelling and computer simulation are powerful tools used to understand the biological phenomenon of RIBE. The suitable mathematical model of repair and mis-repair DNA DSBs damage has been briefly reviewed in view of the relevance of this model towards RIBE phenomenon. The outcome of this paper suggested a recommendation for future research on the suitable mathematical model and simulation analysis in describing the complexity of RIBE phenomenon.


Keywords


RIBE phenomenon; DNA DSBs damage; bystander effects; cell survival fraction

Full Text:

PDF

References


Desouky, O., Ding, N., & Zhou, G. (2015). Targeted and non-targeted effects of ionizing radiation. Journal of Radiation Research and Applied Sciences, 8(2), 247-254.

Baskar, R. (2010). Emerging role of radiation induced bystander effects: cell communications and carcinogenesis. Genome Integrity, 1(1), 13.

Mothersill, C., Fernandez-Palomo, C., Fazzari, J., Smith, R., Schültke, E., Bräuer-Krisch, E., Laissue, J., Schroll, C. & Seymour, C. (2014). Transmission of signals from rats receiving high doses of microbeam radiation to cage mates: an inter-mammal bystander effect. International Dose-Response Society, 12(1), 72-92.

Marín, A., Martín, M., Liñán, O., Alvarenga, F., López, M., Fernández, L., Buchser, D. & Cerezo, L. (2015). Bystander effects and radiotherapy. Reports of Practical Oncology & Radiotherapy, 20(1), 12-21.

Widel, M. (2016). Radiation-induced bystander effect: from in vitro studies to clinical application. International Journal of Medical Physics, Clinical Engineering and Radiation Oncology, 5(01), 1.

Wang, H., Yu, K. N., Hou, J., Liu, Q., & Han, W. (2015). Radiation-induced bystander effect: early process and rapid assessment. Cancer Letters, 356(1), 137-144.

Najafi, M., Fardid, R., Hadadi, G., & Fardid, M. (2014). The mechanisms of radiation-induced bystander effect. Journal of Biomedical Physics & Engineering, 4(4), 163.

Nikitaki, Z., Mavragani, I. V., Laskaratou, D. A., Gika, V., Moskvin, V. P., Theofilatos, K., Vougas, K., Stewart, R. D. & Georgakilas, A. G. (2016). Systemic mechanisms and effects of ionizing radiation: a new ‘old’ paradigm of how the bystanders and distant can become the players. In Seminars in Cancer Biology, 37, 77-95.

Chevalier, F., Hamdi, D. H., Saintigny, Y., & Lefaix, J. L. (2015). Proteomic overview and perspectives of the radiation-induced bystander effects. Mutation Research/Reviews in Mutation Research, 763, 280-293.

Sprung, C. N., Ivashkevich, A., Forrester, H. B., Redon, C. E., Georgakilas, A., & Martin, O. A. (2015). Oxidative DNA damage caused by inflammation may link to stress-induced non-targeted effects. Cancer Letters, 356(1), 72-81.

Olobatuyi, O., de Vries, G., & Hillen, T. (2016). A reaction–diffusion model for radiation-induced bystander effects. Journal of Mathematical Biology, 1-32.

Mothersill, C., & Seymour, C. (2013). Radiation-induced bystander effects and stress-induced mutagenesis. Stress-Induced Mutagenesis Springer New York, 199-222.

Han, W., & Yu, K. N. (2010). Ionizing radiation, DNA double strand break and mutation. Advances in Genetics Research, 4, 197-210.

Havaki, S., Kotsinas, A., Chronopoulos, E., Kletsas, D., Georgakilas, A., & Gorgoulis, V. G. (2015). The role of oxidative DNA damage in radiation induced bystander effect. Cancer letters, 356(1), 43-51.

Mole, R. H. (1953). Whole body irradiation—radiobiology or medicine?. The British Journal of Radiology, 26(305), 234-241.

Nagasawa, H., & Little, J. B. (1992). Induction of sister chromatid exchanges by extremely low doses of α-particles. Cancer Research, 52(22), 6394-6396.

Sokolov, M. V., Smilenov, L. B., Hall, E. J., Panyutin, I. G., Bonner, W. M., & Sedelnikova, O. A. (2005). Ionizing radiation induces DNA double-strand breaks in bystander primary human fibroblasts. Oncogene, 24(49), 7257-7265.

Hu, B., Han, W., Wu, L., Feng, H., Liu, X., Zhang, L., Xu, A., Hei, T. K. & Yu, Z. (2005). In situ visualization of DSBs to assess the extranuclear/extracellular effects induced by low-dose α-particle irradiation. Radiation Research, 164(3), 286-291.

Sasaki, K., Wakui, K., Tsutsumi, K., Itoh, A., & Date, H. (2012). A simulation study of the radiation-induced bystander effect: modeling with stochastically defined signal reemission. Computational and Mathematical Methods in medicine.

Seymour, C. B., & Mothersill, C. (2000). Relative contribution of bystander and targeted cell killing to the low-dose region of the radiation dose–response curve. Radiation Research, 153(5), 508-511.

Yang, H., Asaad, N., & Held, K. D. (2005). Medium-mediated intercellular communication is involved in bystander responses of X-ray-irradiated normal human fibroblasts. Oncogene, 24(12), 2096-2103.

Hatzi, V. I., Laskaratou, D. A., Mavragani, I. V., Nikitaki, Z., Mangelis, A., Panayiotidis, M. I., Pantelias, G. E., Terzoudi, G. I. & Georgakilas, A. G. (2015). Non-targeted radiation effects in vivo: a critical glance of the future in radiobiology. Cancer letters, 356(1), 34-42.

Hall, E. J., & Giaccia, A. J. (2006). Radiobiology for the Radiologist. Lippincott Williams & Wilkins.

Wondergem, J. (2010). Radiation biology: a handbook for teachers and students. International Atomic Energy Agency.

Kundrát, P., & Friedland, W. (2012). Non-linear response of cells to signals leads to revised characteristics of bystander effects inferred from their modelling. International Journal of Radiation Biology, 88(10), 743-750.

Liu, Y., Kobayashi, A., Maeda, T., Fu, Q., Oikawa, M., Yang, G., Konishi, T., Uchihori, Y., Hei, T. K. & Wang, Y. (2015). Target irradiation induced bystander effects between stem-like and non stem-like cancer cells. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 773, 43-47.

Sedelnikova, O. A., Nakamura, A., Kovalchuk, O., Koturbash, I., Mitchell, S. A., Marino, S. A., Brenner, D. J. & Bonner, W. M. (2007). DNA double-strand breaks form in bystander cells after microbeam irradiation of three-dimensional human tissue models. Cancer Research, 67(9), 4295-4302.

Stein, G. S., & Pardee, A. B. (2004). Cell cycle and growth control: biomolecular regulation and cancer. John Wiley & Sons.

Prise, K. M., Schettino, G., Folkard, M., & Held, K. D. (2005). New insights on cell death from radiation exposure. The Lancet Oncology, 6(7), 520-528.

Lara, P. C., López-Peñalver, J. J., de Araújo Farias, V., Ruiz-Ruiz, M. C., Oliver, F. J., & de Almodóvar, J. M. R. (2015). Direct and bystander radiation effects: a biophysical model and clinical perspectives. Cancer Letters, 356(1), 5-16.

Powathil, G. G., Munro, A. J., Chaplain, M. A., & Swat, M. (2016). Bystander effects and their implications for clinical radiation therapy: insights from multiscale in silico experiments. Journal of Theoretical Biology, 401, 1-14.

Ojima, M., Furutani, A., Ban, N., & Kai, M. (2010). Persistence of DNA double-strand breaks in normal human cells induced by radiation-induced bystander effect. Radiation Research, 175(1), 90-96.

Facoetti, A., Mariotti, L., Ballarini, F., Bertolotti, A., Nano, R., Pasi, F., Ranza, E. & Ottolenghi, A. (2009). Experimental and theoretical analysis of cytokine release for the study of radiation-induced bystander effect. International Journal of Radiation Biology, 85(8), 690-699.

Hattori, Y., Yokoya, A., & Watanabe, R. (2015). Cellular automaton-based model for radiation-induced bystander effects. BMC Systems Biology, 9(1), 90.

Lintott, R., McMahon, S., Prise, K., Addie-Lagorio, C., & Shankland, C. (2014). Using process algebra to model radiation induced bystander effects. In International Conference on Computational Methods in Systems Biology, 196-210.

Brenner, D. J., Little, J. B., & Sachs, R. K. (2001). The bystander effect in radiation oncogenesis: II. A quantitative model. Radiation Research, 155(3), 402-408.

Little, M. P., Filipe, J. A. N., Prise, K. M., Folkard, M., & Belyakov, O. V. (2005). A model for radiation-induced bystander effects, with allowance for spatial position and the effects of cell turnover. Journal of Theoretical Biology, 232(3), 329-338.

Xia, J., Liu, L., Xue, J., Wang, Y., & Wu, L. (2009). Modeling of radiation-induced bystander effect using Monte Carlo methods. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 267(6), 1015-1018.

Ballarini, F., Facoetti, A., Mariotti, L., Nano, R., & Ottolenghi, A. (2009). Cellular communication and “non-targeted effects”: modelling approaches. Advances in Space Research, 44(8), 917-925.

Vassiliev, O. N. (2014). A model of radiation-induced bystander effect based on an analogy with ferromagnets. Application to modelling tissue response in a uniform field. Physica A: Statistical Mechanics and its Applications, 416: 242–251.

Siam, F. M., Grinfeld, M., Bahar, A., Rahman, H. A., Ahmad, H., & Johar, F. (2016). A mechanistic model of high dose irradiation damage. Mathematics and Computers in Simulation.

Ebert, M. A., Suchowerska, N., Jackson, M. A., & McKenzie, D. R. (2010). A mathematical framework for separating the direct and bystander components of cellular radiation response. Acta Oncologica, 49(8), 1334-1343.

Boyd, M., Ross, S. C., Dorrens, J., Fullerton, N. E., Tan, K. W., Zalutsky, M. R., & Mairs, R. J. (2006). Radiation-induced biologic bystander effect elicited in vitro by targeted radiopharmaceuticals labeled with α-, β-, and Auger electron–emitting radionuclides. Journal of Nuclear Medicine, 47(6), 1007-1015.

Siam, F. M., Kamal, M. H. A., & Johar, F. (2016). Parameter Estimation For A Mechanistic Model Of High Dose Irradiation Damage Using Nelder-Mead Simplex Method And Genetic Algorithm. Jurnal Teknologi, 78(12-2), 87-92.




DOI: http://dx.doi.org/10.11113/mjfas.v13n2.563

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Muhamad Hanis Nasir, Fuaada Mohd Siam

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Copyright © 2016 Penerbit UTM Press, Universiti Teknologi Malaysia. Disclaimer: This website has been updated to the best of our knowledge to be accurate. However, Universiti Teknologi Malaysia shall not be liable for any loss or damage caused by the usage of any information obtained from this website. AmazingCounters.com